翻訳と辞書
Words near each other
・ Stationary engine
・ Stationary engineer
・ Stationary ergodic process
・ Stationary front
・ Stationary fuel cell applications
・ Stationary High Altitude Relay Platform
・ Stationary Odyssey
・ Stationary orbit
・ Stationary phase
・ Stationary phase approximation
・ Stationary point
・ Stationary process
・ Stationary Reference Frame
・ Stationary sequence
・ Stationary set
Stationary spacetime
・ Stationary state
・ Stationary steam engine
・ Stationary subspace analysis
・ Stationary target indication
・ Stationary Traveller
・ Stationary wavelet transform
・ Stationary-wave integrated Fourier transform spectrometry
・ Stationers Park
・ Stationers' Company's School
・ Stationers' Crown Woods Academy
・ Stationers' Register
・ Stationery
・ Stationery cabinet
・ Stationery Office


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Stationary spacetime : ウィキペディア英語版
Stationary spacetime

In general relativity, specifically in the Einstein field equations, a spacetime is said to be stationary if it admits a Killing vector that is asymptotically timelike.〔(Ludvigsen, M., ''General Relativity: A Geometric Approach'', Cambridge University Press, 1999, ISBN 052163976X )〕
In a stationary spacetime, the metric tensor components, g_, may be chosen so that they are all independent of the time coordinate. The line element of a stationary spacetime has the form (i,j = 1,2,3)
: ds^ = \lambda (dt - \omega_\, dy^i)^ - \lambda^ h_\, dy^i\,dy^j,
where t is the time coordinate, y^ are the three spatial coordinates and h_ is the metric tensor of 3-dimensional space. In this coordinate system the Killing vector field \xi^ has the components \xi^ = (1,0,0,0). \lambda is a positive scalar representing the norm of the Killing vector, i.e., \lambda = g_\xi^\xi^, and \omega_ is a 3-vector, called the twist vector, which vanishes when the Killing vector is hypersurface orthogonal. The latter arises as the spatial components of the twist 4-vector \omega_ = e_\xi^\nabla^\xi^(see, for example,〔Wald, R.M., (1984). General Relativity, (U. Chicago Press)〕 p. 163) which is orthogonal to the Killing vector \xi^, i.e., satisfies \omega_ \xi^ = 0. The twist vector measures the extent to which the Killing vector fails to be orthogonal to a family of 3-surfaces. A non-zero twist indicates the presence of rotation in the spacetime geometry.
The coordinate representation described above has an interesting geometrical interpretation.〔Geroch, R., (1971). J. Math. Phys. 12, 918〕 The time translation Killing vector generates a one-parameter group of motion G in the spacetime M. By identifying the spacetime points that lie on a particular trajectory (also called orbit) one gets a 3-dimensional space (the manifold of Killing trajectories) V= M/G, the quotient space. Each point of V represents a trajectory in the spacetime M. This identification, called a canonical projection, \pi : M \rightarrow V is a mapping that sends each trajectory in M onto a point in V and induces a metric h = -\lambda \pi
*g on V via pullback. The quantities \lambda, \omega_ and h_ are all fields on V and are consequently independent of time. Thus, the geometry of a stationary spacetime does not change in time. In the special case \omega_ = 0 the spacetime is said to be static. By definition, every static spacetime is stationary, but the converse is not generally true, as the Kerr metric provides a counterexample.
In a stationary spacetime satisfying the vacuum Einstein equations R_ = 0 outside the sources, the twist 4-vector \omega_ is curl-free,
: \nabla_\mu \omega_\nu - \nabla_\nu \omega_\mu = 0,\,
and is therefore locally the gradient of a scalar \omega (called the twist scalar):
: \omega_\mu = \nabla_\mu \omega.\,
Instead of the scalars \lambda and \omega it is more convenient to use the two Hansen potentials, the mass and angular momentum potentials, \Phi_ and \Phi_, defined as〔Hansen, R.O. (1974). J. Math. Phys. 15, 46.〕
: \Phi_ = \frac\lambda^(\lambda^ + \omega^ -1),
: \Phi_ = \frac\lambda^\omega.
In general relativity the mass potential \Phi_ plays the role of the Newtonian gravitational potential. A nontrivial angular momentum potential \Phi_ arises for rotating sources due to the rotational kinetic energy which, because of mass-energy equivalence, can also act as the source of a gravitational field. The situation is analogous to a static electromagnetic field where one has two sets of potentials, electric and magnetic. In general relativity, rotating sources produce a gravitomagnetic field which has no Newtonian analog.
A stationary vacuum metric is thus expressible in terms of the Hansen potentials \Phi_ (A=M, J) and the 3-metric h_. In terms of these quantities the Einstein vacuum field equations can be put in the form〔
: (h^\nabla_i \nabla_j - 2R^)\Phi_A = 0,\,
: R^_ = 2(- (1+ 4 \Phi^)^\nabla_\Phi^\nabla_\Phi^ ),
where \Phi^ = \Phi_\Phi_ = (\Phi_^ + \Phi_^), and R^_ is the Ricci tensor of the spatial metric and R^ = h^R^_ the corresponding Ricci scalar. These equations form the starting point for investigating exact stationary vacuum metrics.
==See also==

*Axisymmetric spacetime
*Static spacetime

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Stationary spacetime」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.